If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-18x-157=0
a = 9; b = -18; c = -157;
Δ = b2-4ac
Δ = -182-4·9·(-157)
Δ = 5976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5976}=\sqrt{36*166}=\sqrt{36}*\sqrt{166}=6\sqrt{166}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{166}}{2*9}=\frac{18-6\sqrt{166}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{166}}{2*9}=\frac{18+6\sqrt{166}}{18} $
| 4-2(w-4)2=-124 | | 3x/5-x=x/10-1.5 | | -7(x-19)=-133 | | x=1368800/109 | | 109x=1368800 | | 4x+5=-4(2x+12) | | 3.25g=13 | | 58=4x+19 | | 6/7e=2/49 | | 9+5/n=7 | | 9x+8=8x-8 | | X+12=17x | | 8/n-1=3 | | 4x-5=4x-6 | | 3/8x=39 | | n*3+6=18 | | 5w+50=120 | | 5-n+10=12 | | X=4x4 | | X^2-2-x+4=0 | | 5.39*2.5=x | | 15/7x=3 | | 4=95-y | | (4x)+(7x-2)+(5x-10)=180 | | (4+x)(x+5)=90 | | 19=-t+7 | | 1=-17+3n | | 20x=40+20x | | 3a-11=-16 | | (16x-3)=(9x+8) | | u/5+14=30 | | 54=2y+4y |